一、大数的认识
(一)本单元知识要点:
1.计数单位。
(1)作用:计量数的大小。
(2)学过的计数单位有(按从小到大的顺序):个,十,百,千,万,十万,百万,千万,亿,十亿,百亿,千亿。
(3)10个一是十,10个十是一百,10个一百是一千,10个一千是一万, 10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
(4)相邻两位数之间的进位是十。
2、数位:
(1)数中的每一个数字所占的位置叫做数位。
(2)数位顺序表:……千位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位
(3)记住重要的数位:从右起,第五位是万位,第九位是亿位。
(4)数级:从个位起,每4个数位为一级,依次为:个级(个位,十位,百位,千位,表示多少个一;万级(万位,十万位,百万位,千万位),表示多少个万;亿级(亿位,十亿位,百亿位,千亿位),表示多少个亿。
3、计数单位,数位,数级它们之间的联系:…亿级万级个级数级…千亿位百亿位十亿位亿位千 万位十万位万位千位百位十位个位数位…千亿百亿十亿亿千万万十万万千百十一 计数单位。
4、位数:一个整数中有几个数字就是几位数。
5、计数单位,数位,数级,位数不能混淆,不能说它们之间有相等的关系。如:计数单位就是数位,数位也是位数等。(1)、计数单位和数位有什么区别?一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿、兆、……,都是计数单位。数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些置,都叫做数。
教师总结形成较为完整的知识结构:
(二)本单元难点:
亿以内数的读法,数级中间、末尾有0的读法
1、先分级,四位一级
2、从高位读起,一级一级往下读,没一级三上的书都按照个位上的数来读,再在后面添上这一级的计数单位。
(三)常见问题及建议:
A、我们已经学习了亿以内数和亿以上数的写法,那么在写的时候要注意什么问题?
1.第一步做什么?第二步?
第一步要判断最高位是那一位,从最高位写到最低位。
七千万零五百(70000500)
2.每一级的末尾没有单位时该怎么办?谁举一个例子。
每一级的末尾没有单位时应该用零占位。如:五百二十一万(521 0000)
3.是不是读零的地方都写一个零?七千万零五十。(7000 0050)
要对准数位一位一位往下写,哪一位上一个单位也没有就写0占位。如:六百万八千(600 8000)
B、比较大小
在比较大小的时候,我门应该怎么做?第一步?有几种情况?
第一步分级。
如果数位相同和不同怎么办?
看题目:20 8090>20 0809
数位相同时,要从最高位比较,如果最高位相同,就一步一步的往下比,直到比出大小为止。
如:1900<2万
如果碰到这样的数时,应该怎么办?
可以先把2万化成阿拉伯数字。
然后在按照比较的方法。
3458<123456
数位不同,只要看数位多的数,那个数就大。
C、省略“亿”“万”后面的尾数
1.整亿整万的数。
如:470 0000=470万 127 0000 0000=127亿
这样的数要怎样省略?
整万的数要省略四个零,后面加一个万字,整亿的数要省略亿后面的八个零,加一个亿字。
2.求近似数
如:1292 4800≈1292万 2 7200 0000≈3亿 35 0720 0000≈35亿
求近似数要怎么求?
省略万后面的尾数要看千位上的数,然后省略后面的数,加一个万字。
省略亿后面的尾数要看千万位上的数,然后省略后面的数,加一个亿字。
在这里要重点强调整数和近似数是不同的,要注意符号。
二、角的度量:
(一)本单元知识要点:
1、射线只有一个端点,可以向一端无限延伸,不可度量长度。
2、直线没有端点,可以向两端无限延伸,不可度量度。
3、线段有两个端点,是有限长的,可以度量长度。
4、从一点出发可以画无数条射线。经过一点可以画无数条直线。经过两点只能画一条直线。两点间只能画一条线段。
5、从一点引出两条射线所组成的图形叫做角。这一点,就是这两条射线的公共端点,叫做角的顶点,这两条射线叫做角的边。
6、角的计量单位有“度”,用符号“°表示。把半圆分成180等份,每份所对的角的大小是1度,记作1°。
7、量角器上有两排刻度,开口向左的角看外刻度,开口向右的角看内刻度。
8、量角的步骤:(1)量角器的中心点和角的顶点重合。(2)量角器的“0”刻度线和角的一条边重合。(3)角的另一条边和量角器上的哪个刻度线重合,这个刻度线所指的度数就是角的度数。
9、角的大小要看两条边张开的大小,张开得越大,角越大,张开得越小,角越小。角的大小与两条边的长短没有关系。
10、锐角是小于90°,直角是等于90°,钝角是大于90°而且要小于180°,平角是等于180°,周角是等于360°。
1111、1平角=2直角1周角=2平角=4直角
12、一副三角板的度数分别是45°、90°、30°、60°。
13、画角的步骤:(1)画一条射线,使量角器的中心和射线的端点重合,0刻度线和射线重合(2)在量角器所画度数的刻度线的地方点一个点。(3)以画出的射线的端点点,通过刚画的点,再画一条射线。
(二)本单元难点:
重点:1、加深对角的认识,形成画角和量角的技能,初步培养学生的作图能力。2、角的意义。认识量角器,会用量角器量角。
3、区分直角、锐角、钝角、平角和周角,知道直角、平角和周角的关系。
4、会用量角器按指定度数画角。巩固角的度量的相关知识。
难点:1、认识平角和周角,以及平角、周角、锐角、钝角和直角之间的关系。
2、射线、直线和线段三者之间的关系
(三)常见问题及复习提要:
1、如果将线段两端无限延长就得到一条直线。
(1)直线有什么特点?(没有端点,两端是无限延伸的)
(2)直线可以用“直线AB”来表示,还可以用小写字母表示,如直线l.
(3)线段和直线有什么关系?
2、认识射线。
(1)线段一端无限延长就得到一条射线。
(2)射线有什么特点?(只有一个端点,另一端无限延伸)
(3)生活中你见过射线吗?
(4)用尺或三角板画射线
3、认识计量角的单位要测量一个角的大小应该选用一个合适的角作单位来量,人们将圆平均成360份,将其中一份所对的角作为度量角的单位,它的大小就是1度,记作1°,根据这一原理,人们制作了度量角的工具——量角器。量角器是把半圆分成180等份。
角的计量单位是“度”,用符号“°”表示。把半圆平分成180 等份,每一份所对的角的大小是l 度。记做1°角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
4.角的分类:锐角<90°,直角=90°,90°<钝角<180°,平角=180°=2个直角,周角=360°=2个平角=4个平角
5.画角步骤:
①画一条射线,使量角器的中心和封线的端点重合,0 刻度线和射线重合。
②在量角器65°刻度线的地方点一个点。
③以画出的射线的端点为端点,通过刚画的点,再画一条射线。
6.直线、射线、角小结:没有端点,可以向两端无限延伸,这种线叫直角。只有一个端点,向一端无限延伸,这种线叫射线。直线、射线与线段有什么联系和区别?①、直线和射线都可以无限延伸,因此无法量出长短。②、线段可以量出长度。③、线段有两个端点,直线没有端点,射线只有一个端,点。
三、三位数乘两位数
(一)本单元知识要点:
(二)本单元难点:
A、口算乘法:
1、一位数乘两位数:先乘被乘数的十位数,得到一个整十数,再乘个位数,得到一个数,最后把这两个得数相加。
2、一位数乘三位数:先乘被乘数的百位数,得到一个整百数,再乘被乘数的十位数,得到一个整十数,又乘个位数,得到一个数,最后把这三个得数相加。
3、整十数乘两位数(或三位数):先不看每个数末尾的0,进行相乘,再在得数的末尾添上0(0的个数是两个因数末尾0的总个数)。
4、例如:48×6=(288) 40×6=240
8×6=48 240 + 48 = 288
所以48×6=288
358× 5=(1790) 300×5=1500 50×5=250
8×5=40 1500+250+40=1790
所以:358×5=1790
480×50=(24000)
因为48×5=240 所以480×50=24000
B、笔算乘法:
1、三位数乘两位数:先用两位数的个位与三位数相乘,积的末尾与个位对齐;再用两位数的十位与三位数相乘,积的末尾与十位对齐;最后把两次的积相加。
2、例题详细过程如下:
3、数中间有0,或数的末尾有0的乘法:(1)数中间有0的乘法:数中间的0也要乘,0乘任何数都得0,还要注意后面有无进位。(2)数 的 末 尾 有0的 乘 法:先不 看 数的 末 尾 的0,进行相乘,再在积的末尾加上0(0的个数是两个因数末尾0的总个数)。
4、三位数乘两位数,积可能是四位数,也可能是五位数。
5、速度的表示:
速度的单位:a千米/时(每小时a千米),b米/分(每分钟b米),c米/秒(每秒钟c米)。 读法:a千米每时, b米每分, c米每秒
四、平行四边形和梯形
(一)知识要点:
1、平行四边形的定义:平行四边形是有两组对边分别平行的四边形。
2、平行四边形的性质:
①平行四边形的对边平行且相等
②平行四边形的对角相等,两邻角互补。
③平行四边形的两条对角线互相平分
④平行四边形是空间图形。
3、平行四边形的判断方法:
①两组对边分别相等的四边形是平行四边形
②对角线互相平分的四边形是平行四边形
③一组对边平行且相等的四边形是平行四边形
④两组对角分别相等的四边形是平行四边形
⑤两组对边分别平行的四边形是平行四边形。
4、特殊的平行四边形:矩形(长方形),菱形,正方形。
5、平行四边形的面积公式为:底×高(可以看作是矩形。)
6、梯形:指一组对边平行而另一组对边不平行的四边形叫做梯形。
①上底、下底:平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;
②腰:不平行的两边叫腰;
③高:夹在两底之间的垂线段叫梯形的高。
7、梯形中常见的一些判定:
①一组对边平行,另一组对边不平行的四边形是梯形(一组对边平行且不相等的四边形是梯形)
②两腰相等的梯形是等腰梯形
③同一底上的两个角相等的梯形是等腰梯形
④有一个内角是直角的梯形是直角梯形
⑤对角线相等的梯形是等腰梯形.
⑥梯形的中位线等于上底加下底和的一半,且平行于上底和下底。
8、特殊梯形的一些性质:
①等腰梯形的两条腰相等
②等腰梯形在同一底上的两个底角相等
③等腰梯形的两条对角线相等
④等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线
⑤梯形的中位线(两腰中点相连的线叫做中位线)等于上下底和的二分之一
⑥直角梯形有两个角是直角
⑦对角线互相垂直的梯形面积可用两条对角线积的一半计算。
9、梯形的面积:(上底+下底)×高÷2
(二)本单元难点:
(1)认识平行四边形和梯形,掌握特征,理解四边形间的关系。
(2)经历把四边形分类,抽象概括特征的过程,动手操作,合作交流,探讨平行四边形和长方形、正方形之间的关系。
(3)发展学生的空间观念和空间思维能力,培养创新意识。
(4)正 确 理 解“同 一 平面”、“相交”、“互相 平行”、“互相 垂直”等 概 念,发 展 学生的空间想象能力。
(三)常见问题及复习提要:
例1借助画直线的活动,用两幅有关联的小组合作的情景(如图),让学生体会在同一平面内两条直线的位置关系有相交和不相交两种情况,相交又有不同的情况,有成直角的和不成直角的。在此基础上得出结论:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。如果相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
值得注意的是从第一幅图到第二幅图的变化,特别是中间的男同学画的两条直线在第一幅图里没有相交,而把它们再画长一些以后,却相交了。目的是让学生认识平行线的本质特征,理解“永不相交”的含义。因为平行是在同一平面内两条直线的一种特殊的位置关系,其特点是永不相交。
例 2主要教学画垂线的方法。画垂线分两种情况,一种是过直线上一点作已知直线的垂线,另一种是过直线外一点作已知直线的垂线。教材只具体给出了前一种情况的画法,用连续的三幅图表明画的步骤,没有出示文字说明。后一种情况只是提出了问题,让学生自己尝试解决。在此基础上,教材通过引导学生把直线外一点A和直 线上任一点连起来,经过实际测量得出:从直线外一点到这条直线所画的垂直线段最短。这是垂线段的重要性质,在实际生活中有很多应用。最后引出点到直线的距离的概念,为学习平行四边形、梯形和三角形的高做准备。
例3主要教学画平行线的方法。
教材直接用一幅图说明用直尺和三角尺画平行线的方法,没有出示文字说明。接着要求学生用画平行线的方法检验检验两条直线是否平行。然后通过在两条平行线间画几条与平行线垂直的线段并量出长度,让学生初步体会平行线间的距离处处相等的性质。最后教学画长方形和正方形的方法。这是画垂线和平行线的综合应用。
五、除数是两位数的除法:
(一)知识要点:
A、口算除法:
1、口算:
A、根据乘除法的关系用乘法算除法。比如60÷30=(2)就可以想(2)×30=60
B、还可以根据表内除法计算。比如60÷30就是指6里面有几个30,这也是除法的真正含义。看作6个十÷3个十=2。
2、估算:把式中不是整十的数用“四舍五入”法估算成整十数,再进行口算。如478÷81 可以将478看成480,将81看成80,因为480÷80=6,所以478÷81≈6
B、笔算除法:
1、除数是两位数的除法的计算方法:
(1)从被除数的(高)位除起,先用除数试除被除数的前( 两 )位 数,如 果 它 比 除 数 小,再 试 除 前( 三 )位 数 。
( 2)除到被除数的哪一位,就在那一位上面写(商)。
(3)求出每一位商,余下的数必须比除数(小)。记忆:三位数除以两位数,先看被除数前两位;两位不够看三位,除到哪位商那位;不够商1用0占,每次除后要比较,余数要比除数小,最后验算不能少。
2、商的变化规律:
(1)除数不变,被除数乘或除以几,商也乘或除以几。
(2)被除数不变,除数乘或除以几(0除外),商反而除以或乘几。
(3)被除数和除数都乘或除以一个相同的数(0除外),商不变。
3、除法中的数量关系:
被除数÷除数=商??
余数被除数=除数×商+余数
除数=(被除数-余数)÷商
商=(被除数-余数)÷除数
余数=被除数-除数×商
4、判断商是几位数的方法:三位数除以两位数,商可能是一位数,也可能是两位数。(当被除数的前两位小于除数时商是一位数;当被除数的前两位大于或等于除数时,商是两位数。)
5、a÷(b×c)= a÷b÷c= a÷c÷b即:一个数除以两个数的积等于这个数分别除以这两个数。
6、灵活试商:
(1)同头无除商9、8。被除数和除数最高位上的数(相同),并且被除数的前两位比除数(小),商是(9或8)。
(2)被除数的前两位是除数的(一半),商都是(5)。
(二)本单元难点:
1、掌握用整十数除商是一位数的口算方法。
2、除数是两位数,先看被除数的前两位和商的书写位置。
3、学会使用“四舍五入”的试商方法,正确计算除数是两位数的除法。
4、采用灵活试商的方法进行试商计算。
5、掌握除数是两位数的计算法则。
6、能正确的笔算除数是两位数的除法。
(三)常见问题及建议:
我 们 前 面 学 习 过 除 数 是一位 数 的 除 法,在 商 时 都 采用“试 商”法 ,除 数 是两 位 数 的 除 法 也需采用这种方法,不过计算过程有所不同!
1、口算除法:口算除法一般可以通过乘法来间接算除法,也可以用类比把大数想成小数相除,然后得出相应得数。
例:口算80÷20=?
方法一:通过乘法来算除法,因为:20×(4)=80,所以80÷20=4;
方法二:通过把大数看成小数,因为8÷2=4,所以80÷20=4。
2、笔算除法:
在进行除数是两位数的除法计算时,除到被除数的哪一位,就把商在哪一位上面;每求出一位商,余下的数必须比除数小。先用除数试除被除数的前两位数,如果前两位数比除数小,再除前三位数。
六、统计
(一)知识要点:
(二)本单元难点:
1、学会绘制纵向复式条形统计图和绘制横向复式条形统计图。
2、根据统计图发现问题,提出问题,解决问题
(三)常见问题及建议:
1.在已有知识和经验的基础上自主探索复式条形统计图的绘制方法。
在第一学段学习了较多的单式条形统计图和复式统计表,经历了把两个单式统计表合并成一个复式统计表的过程。进而从更高更宽的角度对统计图和统计量有新的认识,进一步地建立统计观念。
例:通过给定的某地区城乡人口的复式统计表,分别完成该地区城镇和乡村人口的纵向单式条形统计图,在此基础上引导学生在已有知识和经验的基础上绘制纵向复式条形统计图。
首先给出了某地区城 乡人口复式统计表,呈现了该地区1985年至2000年每隔5年城乡人口的数量变化情况。它与单式条形统计图有什么区别?一方面从更高更宽的角度认识新的统计图和统计量,体会新知识与旧知识的联系和区别,进一步建立统计观念;另一方面可以根据新的统计图提出问题和解决问题。
六、数学广角
(一)知识要点:
目标:通过观察、操作、实验、推理、交流,从数学的角度寻找解决问题的最优方案和策略。
1.烙饼类问题策略:在每次只能烙两张饼,两面都要烙的情况下:
①烙3张饼:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。
②烙多张饼:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。
2.沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
3.排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
4.“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。
(二)本单元难点:
1、学会优化思路
2、寻找解决问题的最优方案,提高解决问题的能力。
(以上整理仅供参考)
本文版权归原作者及原出处所有,内容为作者观点,并不代表本公众号赞同其观点和对其真实性负责。如涉及作品内容、版权或其它问题,请及时与我们联系,我们将立即更正或删除相关内容。
标签: #四年级上册小学数学电子课本